

Intercloud Directory and Exchange Protocol Detail using XMPP and RDF

David Bernstein Deepak Vij

Huawei Technologies, USA Cloud Strategy Partners, LLC

dbernstein@huawei.com deepak@cloudstrategypartners.com

As submitted to

CBSA: Cloud-based Services and Applications Workshop of:

Co-Located With:

Pre-acceptance draft, not for distribution

Intercloud Directory and Exchange Protocol Detail using XMPP and RDF

David Bernstein Deepak Vij

Huawei Technologies, USA Cloud Strategy Partners, LLC

dbernstein@huawei.com deepak@cloudstrategypartners.com

Abstract

Working groups have proposed building a layered set of

protocols to solve the Cloud Computing interoperability

challenge called “Intercloud Protocols”. Instead of

each cloud provider establishing connectivity with

another cloud provider in a Point-to-Point manner

resulting in the n
2
 complexity problem, Intercloud

Directories and Exchanges will act as mediators for

enabling connectivity and collaboration among

disparate cloud providers. Point to Point protocols such

as HTTP are not suitable beyond 1-to-1 models,

therefore the discussions around many-to-many

mechanisms have been proposed, including XMPP. This

paper details the use of an XMPP mechanism for such

mediation. On top of that, for the federation of the

resources themselves, we define a resources catalog

approach, using the Semantic Web Resource Definition

Framework (RDF) along with a common Ontology of

Cloud Computing Resources to work across a variety of

heterogeneous cloud providers.

1. Introduction

Cloud Computing has a well accepted terminology

[1], and Use Cases and Scenarios for Cloud IaaS and

PaaS interoperability [2][3] have been detailed in the

literature along with the challenges around actually

implementing standards-based Intercloud federation and

hybrid clouds. Work detailing high level architectures

for Intercloud interoperability were proposed next [4][5].

More recently, specific implementation approaches for

Intercloud protocols [6][7] have been proposed,

including specifically Extensible Messaging and

Presence Protocol (XMPP) [8][9] for transport, and

using Semantic Web [10] techniques such as Resource

Description Framework (RDF) [11] to specify resources.

Following that work, we will go about outlining

detailed approaches for these Intercloud protocols; first

a detailed analysis on the feasibility of XMPP as a

control plane operations for Intercloud, and second how

Cloud Computing resources can be described, cataloged,

and mediated using Semantic Web Ontologies,

implemented using RDF techniques.

2. Intercloud Topology

Cloud instances must be able to dialog with each

other. One cloud must be able to find one or more other

clouds, which for a particular interoperability scenario is

ready, willing, and able to accept an interoperability

transaction with and furthermore, exchanging whatever

subscription or usage related information which might

have been needed as a pre-cursor to the transaction.

Thus, an Intercloud Protocol for presence and

messaging needs to exist which can support the 1-to-1,

1-to-many, and many-to-many Cloud to Cloud use cases.

The vision and topology for the Intercloud we will

refer to [2][3] is as follows. At the highest level, the

analogy is with the Internet itself: in a world of TCP/IP

and the WWW, data is ubiquitous and interoperable in a

network of networks known as the “Internet”; in a world

of Cloud Computing, content, storage and computing is

ubiquitous and interoperable in a network of Clouds

known as the “Intercloud”; this is illustrated in Figure 1.

Figure 1. The Intercloud Vision

The reference topology for realizing this vision is

modeled after the public Internet infrastructure. Again,

using the generally accepted terminology

[1][2][3][4][5][6][7], there are Public Clouds, which are

analogous to ISP’s and Service Providers offering

routed IP in the Internet world. There are Private Clouds

which is simply a Cloud which an organization builds to

serve itself.

There are Intercloud Exchanges (analogous to

Internet Exchanges and Peering Points) where clouds

can interoperate, and there is an Intercloud Root,

containing services such as Naming Authority, Trust

Authority, Directory Services, and other “root”

capabilities. It is envisioned that the Intercloud root is of

course physically not a single entity, a global replicating

and hierarchical system similar to DNS [12] would be

utilized. All elements in the Intercloud topology contain

some gateway capability analogous to an Internet Router,

implementing Intercloud protocols in order to

participate in Intercloud interoperability. We call these

Intercloud Gateways. The entire topology is detailed in

Figure 2.

Intercloud Root

Intercloud

Exchanges

Public

Clouds

Private

Clouds

Figure 2. Reference Intercloud Topology

 The Intercloud Gateways would provide mechanism

for supporting the entire profile of Intercloud protocols

and standards. The Intercloud Root and Intercloud

Exchanges would facilitate and mediate the initial

Intercloud negotiating process among Clouds. Once the

initial negotiating process is completed, each of these

Cloud instance would collaborate directly with each

other via a protocol and transport appropriate for the

interoperability action at hand; for example, a reliable

protocol might be needed for transaction integrity, or a

high speed streaming protocol might be needed

optimized for data movement over a particular link.

3. Intercloud Root, Exchanges, and Catalog

Various providers will emerge in the enablement of

the Intercloud. We first envision a community governed

set of Intercloud Root providers who will act as brokers

and host the Cloud Computing Resource Catalogs for

the Intercloud computing resources. They would be

governed in a similar way in which DNS, Top Level

Domains [13] or Certificate Authorities [14] are, by an

organization such as ISOC [15] or ICANN [16]. They

would also be responsible for mediating the trust based

federated security among disparate clouds by acting as

Security Trust Service providers using standards such as

SASL [17] and SAML [18].

The Intercloud Root instances will work with

Intercloud Exchanges to solve the n
2
 problem by

facilitating as mediators for enabling connectivity

among disparate cloud environments. This is a much

preferred alternative to each cloud vendor establishing

connectivity and collaboration among themselves

(point-to-point), which would not scale physically or in

a business sense.

4. XMPP Architectural Considerations

First we investigate how Intercloud Exchange

providers will facilitate the negotiation dialog and

collaboration among disparate heterogeneous cloud

environments, working in concert with Intercloud Root

instances. XMPP is a set of open XML technologies for

presence and real-time communication developed by the

Jabber open-source community in 1999, formalized by

the IETF in 2002-2004, continuously extended through

the standards process of the XMPP Standards

Foundation. XMPP supports presence, structured

conversation, lightweight middleware, content

syndication, and generalized routing of XML data.

Intercloud Root instances will host the root XMPP

servers containing all presence information for

Intercloud Root instances, Intercloud Exchange

Instances, and Internet visible Intercloud capable Cloud

instances. Intercloud Exchanges will host second-tier

XMPP servers. Individual Intercloud capable Clouds

will communicate with each other, as XMPP clients, via

XMPP server environment hosted by Intercloud Roots

and Intercloud Exchanges. We will be using a Cloud

extension to XMPP.

5. XMPP Services Framework

First, we must consider how to construct a Services

Framework layer on top of XMPP, analogous to the

HTTP-based Web service technologies, like the Simple

Object Access Protocol (SOAP) and REpresentational

State Transfer (REST) services. Today these are the

most common technologies for interfaces on a services

framework. However, the intrinsically synchronous

HTTP protocol is unsuitable for time-consuming

operations, like computationally demanding database

lookups or calculations, and server timeouts are

common obstacles. A very common workaround is to

implement a ticketing mechanism in the service, where

the client receives a ticket that can be used to

repetitively poll for results and is highly inefficient.

XMPP based services, on the other hand, are capable of

asynchronous communication. This implies that clients

do not have to poll repetitively for status, but the service

sends the results back to the client upon completion. As

an alternative to RESTful or SOAP service interfaces,

XMPP based services are ideal for lightweight service

scenarios. To address this issue, we leverage a series of

XMPP extensions (XEP series) defined by XMPP

standards foundation. One of these extensions is XEP-

0244 [19]. Extension XEP-0244 provides a “services”

framework on top of base XMPP, named IO Data,

which was designed for sending messages from one

computer to another, providing a transport for remote

service invocation and attempting to overcome the

problems with SOAP and REST. A reference

implementation for the IO Data XEP, XMPP Web

Services for Java (xws4j), is already in place and

available [20], which we are using.

6. XMPP Encryption & Authentication

XMPP includes a method for securing the XML

stream from tampering and eavesdropping. This channel

encryption method makes use of the Transport Layer

Security (TLS) protocol [21], along with a

“STARTTLS” extension that is modeled after similar

extensions for the IMAP [22], and POP3 [23] protocols.

Clouds use TLS to secure the streams prior to

attempting the completion of SASL based authentication

negotiation. SASL has a method for authenticating a

stream by means of an XMPP-specific profile of the

protocol. SASL provides a generalized method for

adding authentication support to connection-based

protocols. Currently, the following authentications

methods are supported by XMPP-specific profile of

SASL protocol: “DIGEST-MD5”, “CRAM-MD5”,

“PLAIN”, and “ANONYMOUS”. SAML provides

authentication in a federated environment. Currently,

there is no support for SAML in XMPP-specific profile

of SASL protocol. However, there is a draft proposal

published that specifies a SASL mechanism for SAML

2.0 that allows the integration of existing SAML

Identity Providers with applications using SASL. The

following sample shows the data flow for a Cloud

securing a stream to an Intercloud Root, using

STARTTLS. It also shows SAML2.0 based

authentication steps.

Step 1: Cloud starts stream to Intercloud Root:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='intercloudexchg.com'
 version='1.0'>

Step 2: Intercloud Root responds by sending a stream

tag to client:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='cloud1_id1'
 from='intercloudexchg.com'
 version='1.0'>

Step 3: Intercloud Root sends the STARTTLS extension

to Cloud:
<stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
</stream:features>

Step 4: Cloud sends Root the STARTTLS command:
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5: Intercloud Root informs Cloud to proceed:
<proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5 (alt): Root informs Cloud that TLS negotiation

has failed and closes both stream and TCP connection:
<failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
</stream:stream>

Step 6: Cloud and Intercloud Root attempt to complete

TLS negotiation over the existing TCP connection.

Step 7: If TLS negotiation is successful, Cloud initiates

a new stream to Intercloud Root:

<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='intercloudexchg.com'
 version='1.0'>

Step 7 (alt): If TLS negotiation is unsuccessful,

Intercloud Root closes TCP connection.

Step 8: Intercloud Root responds by sending a stream

header to Cloud along with any available stream

features:
<stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='intercloudexchg.com'
 id=' cloud1_id2'
 version='1.0'>
<stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-
sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism> CRAM-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>ANONYMOUS</mechanism>
 <mechanism>EXTERNAL</mechanism>
 <mechanism>SAML20</mechanism>
 </mechanisms>
</stream:features>

Step 9: Cloud continues with SASL based authentication

negotiation.

Step 10: Cloud selects an authentication mechanism:
<auth xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’
mechanism=’SAML20’/>

Step 11: Intercloud Root sends a BASE64 [24] encoded

challenge to Cloud as an HTTP Redirect to the SAML

assertion consumer service with the SAML

Authentication Request in the redirection URL.

Step 12: Cloud sends a BASE64 encoded empty

response to the challenge:
<response xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’> =
</response>

Step 13: The Cloud now sends the URL to the local

Intercloud Gateway for processing. The Intercloud

Gateway engages, just like a browser would, in a normal

SAML authentication flow (external to SASL), like

redirection to the Identity Provider. Once authenticated,

the Intercloud Gateways is passed back to the Cloud

who sends the AuthN XMPP response to the Intercloud

Root, containing the subject-identifier and the “jid” as

an attribute.

Step 14: Intercloud Gateway informs Cloud of

successful authentication:
<success xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’/>

Step 14 (alt): Intercloud Gateway informs Cloud of

failed authentication:
<failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
<temporary-auth-failure/>
</failure>
</stream:stream>

7. XMPP based Service Invocation

It was envisioned that the way a Cloud would find

the appropriate services is by leveraging a catalog of

available resources published in a directory residing in

the Intercloud Root. The Cloud’s resource needs would

be specified similarly, and a query would match the

availability to the need. The technologies to use for this

are based in the Semantic Web [25] which provides for

a way to add “meaning and relatedness” to objects on

the Web, by way of specifying Ontologies. For the

Intercloud, we use this technique to specify resources

such as storage, computing, and all the other possible

services which Cloud both expose and consume. RDF is

a way to specify such resources, and SPARQL [26] is a

query/matching system for RDF. Later we will expand

specifically on the RDF and SPARQL areas of the

Intercloud problem, but for now let us detail within

XMPP, how one would go about invocation of a

SPARQL query with an Intercloud Root.

The following request invokes a SPARQL query

over an XMPP connection to the Intercloud Root, to

apply preferences and constraints to the resources in the

computing semantics catalog for determining if the

service description on another Cloud meets the

constraints of the first Cloud’s interest. We use IO Data

XEP, XMPP Web Services for Java (xws4j):
<iq type='set'
 from='user@cloud1.org'
 to='service.intercloudexchg.com'
 id='cloud1_id1'>
 <command xmlns=
 'http://jabber.org/protocol/commands'
 node='constraint_catalog_resources'
 action='execute'>
 <iodata xmlns=
 'urn:xmpp:tmp:io-data' type='input'>
 <in>
 <constraints xmlns='http://www.csp/resOntology'>
 <constraint>
 <attribute>availabilityQuanity </attribute>
 <value>99.999</value>
 </constraint>
 <constraint>
 <attribute>replicationFactor</attribute>
 <value>5</value>
 </constraint>
 <constraint>
 <attribute>tierCountries</attribute>
 <value>JAPAN</value>
 </constraint>
 <constraint>
 <attribute>StorageReplicationMethod
 </attribute>
 <value>AMQP</value>
 </constraint>
 <constraint>
 <attribute>InterCloudStorageAccess
 </attribute>
 <value>NFS</value>
 </constraint>
 </constraints>
 </in>
 </iodata>
 </command>
</iq>

The above service invocation request results into the

following result set:
<iq type='result'
 from='service.intercloudexchg.com'
 to='user@cloud1.org'
 id='cloud1_id1'>
 <command xmlns=
 'http://jabber.org/protocol/commands'
 sessionid='RPC-SESSION-0000001'
 node='constraint_catalog_resources'
 status='completed'>
 <iodata xmlns=
 'urn:xmpp:tmp:io-data' type='output'>
 <out>
 <matchingClouds
 xmlns=' http://www.csp/resOntology'>
 <cloudName>cloud2</cloudName>
 <cloudName>cloud5</cloudName>
 </matchingClouds>
 </out>
 </iodata>
 </command>
</iq>

The example shows how the service invocation

works inside of an XMPP conversation.

8. XMPP based Presence & Dialog

Next, assume that the requesting cloud has found a

target cloud with which to interwork. It must now turn

directly to the target cloud and dialog with it. This last

section describes such a cloud-to-cloud presence and

dialog scenario. The code sample is based on Google

AppEngine XMPP JAVA API set [27].

The following code sample tests for a service

availability then sends a message as part of the

collaboration dialog:
// ...
 JID jid = new JID("user@cloud2.com");
 String msgBody = "Cloud 2, I would like to use
your resources for storage replication using AMQP over
UDT protocol.";
 Message msg = new MessageBuilder()
 .withRecipientJids(jid)
 .withBody(msgBody)
 .build();

 boolean messageSent = false;
 XMPPService xmpp =
XMPPServiceFactory.getXMPPService();
 if (xmpp.getPresence(jid).isAvailable()) {
 SendResponse status =
xmpp.sendMessage(msg);
 messageSent =
(status.getStatusMap().get(jid) ==
SendResponse.Status.SUCCESS);
 }

 if (!messageSent) {
 // Send an email message instead...
 }

Step 2: The following code sample shows how the

recipient Cloud responds back to the chat message as

part of the collaboration dialog.
/* Handler class for all XMPP activity. */
public class XmppReceiverServlet extends HttpServlet
{
 private static final XMPPService xmppService =
 XMPPServiceFactory.getXMPPService();

 public void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws IOException {
 Message message =
xmppService.parseMessage(request);

 Message reply = new MessageBuilder()
 .withRecipientJids(message.getFromJid())
 .withMessageType(MessageType.NORMAL)
 .withBody("Cloud 1, please go ahead and use my
resources for storage replication using AMQP/UDT
protocol.")
 .build();

 xmppService.sendMessage(reply);
 }

9. Ontology based Cloud Computing

Resources Catalog

In order for the Intercloud capable Cloud instances to

federate or otherwise interoperate resources, a Cloud

Computing Resources Catalog system is necessary

infrastructure. This catalog is the holistic and abstracted

view of the computing resources across disparate cloud

environments. Individual clouds will, in turn, will utilize

this catalog in order to identify matching cloud

resources by applying certain Preferences and

Constraints to the resources in the computing resources

catalog. The technologies to use for this are based on the

Semantic Web which provides for a way to add

“meaning and relatedness” to objects on the Web. To

accomplish this, one defines a system for normalizing

meaning across terminology, or Properties. This

normalization is called an Ontology.

Comprehensive semantic descriptions of services are

essential to exploit them in their full potential. That is

discovering them dynamically, and enabling automated

service negotiation, composition and monitoring. The

semantic mechanisms currently available in service

registries such as UDDI [28] are based on taxonomies

called “tModel” [29]. tModel fails to provide the means

to achieve this, as they do not support semantic

discovery of services [30][31].

We are proposing a new and improved service

directory on the lines of UDDI but based on RDF/OWL

[32] ontology framework instead of current tModel

based taxonomy framework. This catalog captures the

computing resources across all clouds in terms of

“Capabilities”, “Structural Relationships” and Policies

(Preferences and Constraints). This Catalog is illustrated

in Figure 3.

Figure 3. Cloud Computing Catalog

10. Cloud Computing Resources Ontology

In order to ensure that the requirements of an

intercloud enabled cloud provider are correctly matched

to the infrastructure capabilities in an automated fashion,

there is a need for declarative semantic model that can

capture both the requirements and constraints of

computing resources.

Over the last several years, there has been ongoing

effort around automation of datacenter/s by companies

such as Elastra [33]. Elastra has defined a modeling

language called EDML [34] for specifying the

datacenter computing resources semantics in terms of

XML based markup language.

We are proposing a similar ontology based semantic

model that captures the features and capabilities

available from a cloud provider’s infrastructure. These

capabilities are logically grouped together and exposed

as standardized units of provisioning and configuration

to be consumed by another cloud provider/s. These

capabilities are then associated with policies and

constraints for ensuring compliance and access to the

computing resources.

The proposed ontology based model not only

consists of physical attributes but quantitative and

qualitative attributes such as “Service Level Agreements

(SLAs)”, “Disaster Recovery” policies, “Pricing”

policies, “Security and Compliance” policies, and so on.

The following is a high level schematic of such ontology

based semantic model.

Figure 4. Cloud Computing Resources Ontology

At a very basic level, the RDF model is called a

“triple” as it consists of three parts,

Subject/Property/Object. It essentially contains one or

more “descriptions” of resources. A “description” is a

set of statements about a resource. It is structurally

similar to entity/attribute/value. Essentially, a statement

in RDF pulls resources, properties, and property values

together. Statements are typically called triples because

they include a subject (the resource), a predicate/verb

(the property), and an object (the property value or

another resource itself). RDF allows you to define a

group of things with common characteristics called

“Classes”. “Classes” are allowed to inherit

characteristics and behaviors from a parent class. Each

user-defined class is implicitly a subclass of super class

called “owl:Thing”.

The hierarchy of user-defined classes in our

proposed ontology scheme are “ResourceCapability” �

“CloudDomainCapability” � “CloudCapability” �

“TierCapabil;ity” � “CapabilityBundle”.

In order to demonstrate a working example, the

following is a code snippet of N-Triples [35] based

ontology semantic model instead. N-Triples and Turtle

[36] are a human-friendlier alternative to RDF/XML. N-

Triples or Turtle code, in turn, can be easily converted

to RDF/XML format using a converter tool. The

following sample shows the flow for semantic model for

cloud computing resources. Due to the large size of the

proposed semantic model for cloud computing resources,

we are unable to capture the sample RDF code snippet

in this document. In order to demonstrate our working

example, we are showing N-Triples [35] code snippet

instead.

Step 1: In our ontology example, “CloudDomain” is an

instance of class “CloudDomainCapability”. It consists

of three resources “Cloud.1”, “Cloud.2” and “Cloud.3”:
<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.1>.

<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.2>.

<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.3>.

<http://cloud/domain> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type>
<http://www.csp/resOntology#ClouddomainCapability>.

<http://cloud/domain> <http://www.w3.org/2000/01/rdf-
schema#label> "Cloud Computing
domain"^^<http://www.w3.org/2001/XMLSchema#string>.

Step 2: “Cloud.1”, in turn, consists of tier instances

“tier.1”, “tier.2” and “tier.3”:
<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#tier1>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#tier2>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#tier3>.

Step 3: Each of these cloud instances has associated

properties such as “StorageReplicationMethod”,

“InterCloudStorageAccess” etc. etc. These properties

are, in turn, used for determining if the computing

resources of a cloud provider meet the preferences and

constraints of the requesting cloud’s interest and

requirements:
<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#Storage-Replication-
Method>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#Inter-Cloud-Storage-
Access>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1#Public-Storage-Access>.

etc

Step 4: Computing resources are logically grouped

together as bundles and exposed as standardized units of

provisioning and configuration to be consumed by

another cloud provider/s. These bundles are

“StorageBundle”, “ProcessingBundle” and

“NetworkBundle”. Each “Tier”, in turn, consists of

instances of resource bundles such as “StorageBundle”

etc. Each “Tier” also has its own associated properties

depicting preferences and constraints:
<http://cloud/domain/cloud.1#tier1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/#storage1>.

<http://cloud/domain/cloud.1#tier1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/#processing1>.

<http://cloud/domain/cloud.1#tier1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/#network1>.

etc

Step 5: “StorageBundle”, in turn, consists of resources

such as “CPU”, “CPU Cores”, “Memory” and

“LocalStorage”:
<http://cloud/domain/cloud.1/bundle/#storage1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/storage1#CPU>.

<http://cloud/domain/cloud.1/bundle/#storage1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/storage1#LocalStor
age0>.

<http://cloud/domain/cloud.1/bundle/#storage1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1/bundle/storage1#Memory>.

etc

11. SPARQL Query Language

SPARQL is a very powerful SQL-like language for

querying and making semantic information machine

process-able. The structure and example of a SPARQL

Query is illustrated in Figure 5.

Structure:
PREFIX: Prefix definition (optional)
SELECT: Result form
FROM: Data sources (optional)
WHERE: Graph pattern (=path expression)

• FILTER

• OPTIONAL

Example:
PREFIX geo: <http://www.geography.org/schema.rdf#>
SELECT ?X ?Y
FROM <http://www.geography.org>
WHERE { ?X geo:hasCapital ?Y.
 ?Y geo:areacode ?Z }
ORDER BY ?X

Figure 5. Structure & Example of SPARQL Query

SPARQL provides a very powerful language for

executing very complex queries into the RDF data

which are often necessary. In our case, the following

example query applies certain Preferences and

Constraints to the resources in the computing semantics

catalog for determining if the service description on

another cloud meets the constraints of the first cloud’s

interest:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?cld1 ?cld2 ?cld3 ?cld4 ?cld5
WHERE { ?cld1
<http://www.csp/resOntology#availabilityQuanity> ?avai
labilityQuanity .
 ?cld2
<http://www.csp/resOntology#replicationFactor> ?replic
ationFactor .
?cld3

<http://www.csp/resOntology#tierCountries> ?tierCountr
ies .
 ?cld4
<http://www.csp/resOntology#StorageReplicationMethod>
?StorageReplicationMethod .
 ?cld5 <http://www.csp/resOntology#
InterCloudStorageAccess > ?InterCloudStorageAccess .
FILTER (?availabilityQuanity = 99.999)
FILTER (?replicationFactor = 5)
FILTER (?tierCountries = "Japan")
FILTER (?StorageReplicationMethod = "AMQP")
FILTER (?InterCloudStorageAccess = "NFS")
 }

12. Conclusions

We have gone into some detail to test the proposal

that XMPP is a suitable control plane protocol for

Intercloud. We successfully addressed topology,

security, authentication, service invocation, and

transported RDF and SPARQL within XMPP, We also

used an XMPP Java API to a Cloud Service. Next we

tested the proposal that Intercloud Exchanges with

Ontology based Computing Resources Catalog can be

the enablement of a “Federated Cloud” environment.

The conclusion is that we have found XMPP and RDF

along with the Intercloud Topology concepts, and an

Intercloud Catalog using Ontology, to be a flexible and

usable approach to the Intercloud problem.

13. References

 [1] Youseff, L. and Butrico, M. and Da Silva, D.,

Toward a unified ontology of cloud computing, GCE’08

Grid Computing Environments Workshop, 2008.

[2] Lijun Mei, W.K. Chan, T.H. Tse, A Tale of Clouds:

Paradigm Comparisons and Some Thoughts on

Research Issues, APSCC pp.464-469, 2008

[3] Cloud Computing Use Cases Google Group (Public),

at http://groups.google.com/group/cloud-computing-use-

cases, http://www.scribd.com/doc/18172802/Cloud-

Computing-Use-Cases-Whitepaper ,

[4] Buyya, R. and Pandey, S. and Vecchiola, C.,

Cloudbus toolkit for market-oriented cloud computing,

1st International CloudCom , 2009

[5] Yildiz M, Abawajy J, Ercan T., Bernoth A., A

Layered Security Approach for Cloud Computing

Infrastructure, ISPAN, pp.763-767, 2009

[6] Bernstein, D., Ludvigson, E., Sankar, K., Diamond,

S., and Morrow, M., Blueprint for the Intercloud -

Protocols and Formats for Cloud Computing

Interoperability, ICIW '09. Fourth International

Conference on Internet and Web Applications and

Services, pp. 328-336, 2009

[7] Bernstein, D., Keynote 2: The Intercloud: Cloud

Interoperability at Internet Scale, NPC, pp.xiii, 2009

Sixth IFIP International Conference on Network and

Parallel Computing, 2009

 [8] Extensible Messaging and Presence Protocol

(XMPP): Core, and related other RFCs at

http://xmpp.org/rfcs/rfc3920.html

[9] XMPP Standards Foundation at http://xmpp.org/

[10] W3C Semantic Web Activity, at

http://www.w3.org/2001/sw/

[11] Resource Description Framework (RDF), at

http://www.w3.org/RDF/

[12] Domain 8ames – Concepts and Facilities, and

related other RFCs, at

http://www.ietf.org/rfc/rfc1034.txt

[13] Domain 8ame System Structure and Delegation, at

http://www.ietf.org/rfc/rfc1591.txt

[14] Internet X.509 Public Key Infrastructure,

Certificate Policy and Certification Practices

Framework, at http://tools.ietf.org/html/rfc3647

[15] The Internet Society, at http://www.isoc.org/

[16] The Internet Corporation for Assigned 8ames and

8umbers, at http://www.icann.org/

[17] Simple Authentication and Security Layer (SASL),

at http://tools.ietf.org/html/rfc4422

[18] Security Assertion Markup Language (SAML), at

http://saml.xml.org/saml-specifications

[19] XEP-0244: IO Data, at

http://xmpp.org/extensions/xep-0244.html,

[20] XMPP Web Services for Java (XWS4J), at

http://sourceforge.net/projects/xws4j/

[21] The Transport Layer Security (TLS) Protocol, at

http://tools.ietf.org/html/rfc5246

[22] Internet Message Access Protocol (IMAP), at

http://tools.ietf.org/search/rfc3501

[23] Post Office Protocol (POP3), at

http://tools.ietf.org/html/rfc1939

[24] The Base16, Base32, and Base64 Data Encodings,

at http://www.ietf.org/rfc/rfc4648.txt

[25] W3C Semantic Web Activity, at

http://www.w3.org/2001/sw/

[26] SPARQL Query Language for RDF, at

http://www.w3.org/TR/rdf-sparql-query/

[27] Google App Engine, The XMPP Java API, at

http://code.google.com/appengine/docs/java/xmpp/

[28] OASIS UDDI Specification TC, at

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=uddi-

spec

[29] UDDI Registry tModels, at

http://www.uddi.org/taxonomies/UDDI_Registry_tMod

els.htm

[30] Paolucci, M., Kawamura T., Payne T., and Sycara

K., Importing the Semantic Web in UDDI, Web Services,

E-Business and Semantic Web Workshop, 2002.

[31] Moreau, L. and Miles, S. and Papay, J. and Decker,

K. and Payne, T., Publishing semantic descriptions of

services, First GGF Semantic Grid Workshop, held at

the Ninth Global Grid Forum, Chicago IL, USA, 2003

[32] Web Ontology Language, at

http://www.w3.org/TR/owl-features/

[33] Elastra, at http://www.elastra.com

[34] EDML, at

http://www.elastra.com/technology/languages/edml

[35] N-Triples, at

http://www.w3.org/2001/sw/RDFCore/ntriples/

[36] Turtle – Terse RDF Triple Language, at

http://www.w3.org/TeamSubmission/turtle/#sec-diff-n3

