

Using Semantic Web Ontology for Intercloud Directories and Exchanges

David Bernstein Deepak Vij

Huawei Technologies, USA

2330 Central Expressway

Santa Clara, CA 95050

Cloud Strategy Partners, LLC

3260 Nipoma Court

San Jose, CA 95135
dbernstein@huawei.com deepak@cloudstrategypartners.com

For submission to ICOMP'10 - The 2010 International Conference on Internet Computing, Las Vegas, "V Jul 12-15 2010

as part of WORLDCOMP'10 - The 2010 World Congress in Computer Science, Computer Engineering, and Applied Computing

Pre-acceptance draft, not for distribution

Using Semantic Web Ontology for Intercloud Directories and Exchanges

David Bernstein Deepak Vij

Huawei Technologies, USA

2330 Central Expressway

Santa Clara, CA 95050

Cloud Strategy Partners, LLC

3260 Nipoma Court

San Jose, CA 95135
dbernstein@huawei.com deepak@cloudstrategypartners.com

For submission to ICOMP'10 - The 2010 International Conference on Internet Computing, Las Vegas, "V Jul 12-15 2010

as part of WORLDCOMP'10 - The 2010 World Congress in Computer Science, Computer Engineering, and Applied Computing

Contact Author: David Bernstein. Keywords: “Cloud Computing”, “Intercloud”, “Semantic Web”, “RDF”, “Ontology”

Abstract

The concept of a cloud operated by one service provider

or enterprise interoperating with a clouds operated by

another is a powerful idea. So far that is limited to use

cases where code running on one cloud explicitly

references a service on another cloud. There is no

implicit and transparent interoperability. This

interoperability should be more than cloud to cloud, it

should embody 1-to-many and many-to-many models.

Working groups have proposed building a layered set of

protocols to solve this interoperability challenge called

“Intercloud Protocols”. Instead of each cloud provider

establishing connectivity with another cloud provider in

a Point-to-Point manner resulting into n
2
 complexity

problem, Intercloud Directories and Exchanges will

help facilitate as mediators for enabling connectivity

and collaboration among disparate cloud providers.

This paper proposes a mechanism for such mediation

utilizing a resources catalog approach, defined using

the Semantic Web Resource Definition Framework

(RDF) and a common Ontology of Cloud Computing

Resources across heterogeneous cloud providers.

1. Introduction

Cloud Computing has emerged recently as a label for

a particular type of datacenter. For the purposes of this

paper, we define Cloud Computing as a datacenter/s

which:

1. May be hosted by anyone; an enterprise, a service

provider, or a government.

2. Implement a pool of computing resources and

services which are shared amongst subscribers.

3. Charge for resources and services using an “as

used” metered and/or capacity based model.

4. Are usually geographically distributed, in a manner

which is transparent to the subscriber (unless they

explicitly ask for visibility of that).

5. Are automated in that the provisioning and

configuration (and de-configuration and un-

provisioning) of resources and services occur on a

“self service” basis, usually programmatic request

of the subscriber, occur in an automated way with

no human operator assistance, and are delivered in

one or two orders of seconds.

6. Resources and services are delivered virtually, that

is, although they may appear to be physical (servers,

disks, network segments, etc) they are actually

virtual implementations of those on an underlying

physical infrastructure which the subscriber never

sees.

7. The physical infrastructure changes rarely. The

virtually delivered resources and services are

changing constantly.

8. Resources and services may be of a physical

metaphor (servers, disks, network segments, etc) or

they may be of an abstract metaphor (blob storage

functions, message queue functions, email functions,

multicast functions, all of which are accessed by

running of code or script to a set of API’s for these

abstract services). These may be intermixed.

Cloud Computing services as defined above are best

exemplified by the Amazon Web Services (AWS) [1][2]

or Google AppEngine [3][4]. Both of these systems

exhibit all eight characteristics as detailed above.

Various companies are beginning to offer similar

services, such as the Microsoft Azure Service [5], and

software companies such as VMware [6] and open

source projects such as UCSB Eucalyptus [7][8] are

creating software for building a cloud service.

In case 8, where the resources and services are of a

physical metaphor, the cloud is said to be exposing

“Infrastructure as a Service”, or IaaS. In the last case

described above (number 8), where the resources and

services are of an abstract metaphor, the cloud is said to

be exposing “Platform as a Service”, or PaaS. A PaaS

cloud looks like a remote, virtual, distributed

implementation of a managed code container, or

“Application Server”, similar to J2EE [9] or .NET [10].

The terms are well accepted now [11].

Use Cases and Scenarios for Cloud IaaS and PaaS

interoperability [12][13] have been detailed in the

literature along with the challenges around actually

implementing standards-based Intercloud federation and

hybrid clouds. Work detailing high level architectures

for Intercloud interoperability were proposed next

[14][15]. More recently, specific implementation

approaches for Intercloud protocols [16][17] have been

proposed, including specifically Extensible Messaging

and Presence Protocol (XMPP) [18][19] for transport,

and using Semantic Web [20] techniques such as

Resource Description Framework (RDF) [21] as a way

to specify resources.

Following that work outlining approaches for

Intercloud protocols, a detailed analysis on the

feasibility of XMPP was explored after that [22]. The

work went through considerable detail to implement

various XMPP-based control plane operations for

Intercloud:

• Fitting XMPP into an Intercloud Topology

• Securing the XMPP conversation using TLS

• Authentication over XMPP using SAML

• Service Invocation over XMPP using IO Data

XEP, XMPP Web Services for Java (xws4j)

• RDF and SPARQL within XMPP

• XMPP Java API to a Cloud Service

The conclusion was that for each of these techniques

it found XMPP to be flexible and usable. This paper

moves to the next topic, by continuing to investigate the

blueprint set out as referenced [16][17]. We now

investigate how Cloud Computing resources can be

described, cataloged, and mediated using Semantic Web

Ontologies, implemented using RDF techniques.

2. Intercloud Topology

Cloud instances must be able to dialog with each

other. One cloud must be able to find one or more other

clouds, which for a particular interoperability scenario is

ready, willing, and able to accept an interoperability

transaction with and furthermore, exchanging whatever

subscription or usage related information which might

have been needed as a pre-cursor to the transaction.

Thus, an Intercloud Protocol for presence and

messaging needs to exist which can support the 1-to-1,

1-to-many, and many-to-many Cloud to Cloud use cases.

The vision and topology for the Intercloud we will

refer to [12][13] is as follows. At the highest level, the

analogy is with the Internet itself: in a world of TCP/IP

and the WWW, data is ubiquitous and interoperable in a

network of networks known as the “Internet”; in a world

of Cloud Computing, content, storage and computing is

ubiquitous and interoperable in a network of Clouds

known as the “Intercloud”; this is illustrated in Figure 1.

Figure 1. The Intercloud Vision

The reference topology for realizing this vision is

modeled after the public Internet infrastructure. Again,

using the generally accepted terminology

[11][12][13][14][15][18][19], there are Public Clouds,

which are analogous to ISP’s and Service Providers

offering routed IP in the Internet world. There are

Private Clouds which is simply a Cloud which an

organization builds to serve itself.

There are Intercloud Exchanges (analogous to

Internet Exchanges and Peering Points) where clouds

can interoperate, and there is an Intercloud Root,

containing services such as Naming Authority, Trust

Authority, Directory Services, and other “root”

capabilities. It is envisioned that the Intercloud root is of

course physically not a single entity, a global replicating

and hierarchical system similar to DNS [23] would be

utilized. All elements in the Intercloud topology contain

some gateway capability analogous to an Internet Router,

implementing Intercloud protocols in order to

participate in Intercloud interoperability. We call these

Intercloud Gateways. The entire topology is detailed in

Figure 2.

Intercloud Root

Intercloud

Exchanges

Public

Clouds

Private

Clouds

Figure 2. Reference Intercloud Topology

 The Intercloud Gateways would provide mechanism

for supporting the entire profile of Intercloud protocols

and standards. The Intercloud Root and Intercloud

Exchanges would facilitate and mediate the initial

Intercloud negotiating process among Clouds. Once the

initial negotiating process is completed, each of these

Cloud instance would collaborate directly with each

other via a protocol and transport appropriate for the

interoperability action at hand; for example, a reliable

protocol might be needed for transaction integrity, or a

high speed streaming protocol might be needed

optimized for data movement over a particular link.

3. Intercloud Root, Exchanges, and Catalog

Various providers will emerge in the enablement of

the Intercloud. We first envision a community governed

set of Intercloud Root providers who will act as brokers

and host the Cloud Computing Resource Catalogs for

the Intercloud computing resources. They would be

governed in a similar way in which DNS, Top Level

Domains [24] or Certificate Authorities [25] are, by an

organization such as ISOC [26] or ICANN [27]. They

would also be responsible for mediating the trust based

federated security among disparate clouds by acting as

Security Trust Service providers using standards such as

SASL [28] and SAML [29].

The Intercloud Root instances will work with

Intercloud Exchanges to solve the n
2
 problem by

facilitating as mediators for enabling connectivity

among disparate cloud environments. This is a much

preferred alternative to each cloud vendor establishing

connectivity and collaboration among themselves

(point-to-point), which would not scale physically or in

a business sense.

Intercloud Exchange providers will facilitate the

negotiation dialog and collaboration among disparate

heterogeneous cloud environments, working in concert

with Intercloud Root instances as described previously

[22]. Intercloud Root instances will host the root XMPP

servers containing all presence information for

Intercloud Root instances, Intercloud Exchange

Instances, and Internet visible Intercloud capable Cloud

instances. Intercloud Exchanges will host second-tier

XMPP servers. Individual Intercloud capable Clouds

will communicate with each other, as XMPP clients, via

XMPP server environment hosted by Intercloud Roots

and Intercloud Exchanges.

In order for the Intercloud capable Cloud instances to

federate or otherwise interoperate resources, a Cloud

Computing Resources Catalog system is necessary

infrastructure. This catalog is the holistic and abstracted

view of the computing resources across disparate cloud

environments. Individual clouds will, in turn, will utilize

this catalog in order to identify matching cloud

resources by applying certain Preferences and

Constraints to the resources in the computing resources

catalog.

The technologies to use for this are based on the

Semantic Web which provides for a way to add

“meaning and relatedness” to objects on the Web. To

accomplish this, one defines a system for normalizing

meaning across terminology, or Properties. This

normalization is called an Ontology.

4. Ontology based Cloud Computing

Resources Catalog

The Intercloud system not only focuses on the

provisioning of computing resources inside a single

cloud; it provides a holistic and abstracted view of the

computing resources across disparate cloud

environments. Participating cloud providers will

advertise their resource capabilities within the cloud

computing resources catalog hosted by Intercloud Root

Providers. Management of the thousands of resources

and configurations requires careful control and planning

to achieve business objectives and avoid errors. The

chief objectives of the planned configuration are to

provide cost effective use of computing resources and to

meet the business objectives of the enterprise.

In order to automate an environment whereby

software agents versus traditional human users discover

and consume services, intelligent ontology based service

registries are needed for dynamically discovering and

provisioning computing resources across various

computing cloud environments (Amazon, Azure etc.

etc.).

Comprehensive semantic descriptions of services are

essential to exploit them in their full potential. That is

discovering them dynamically, and enabling automated

service negotiation, composition and monitoring. The

semantic mechanisms currently available in service

registries such as UDDI [30] are based on taxonomies

called “tModel” [31]. tModel fails to provide the means

to achieve this, as they do not support semantic

discovery of services [32][33]. tModel supports a

construct which serves two purposes: it can serve as a

namespace for a taxonomy or as a proxy for a technical

specification that lives outside the registry. Such a

tModel construct has some intrinsic limitations, for

example classifications for the Intercloud use case can

also be defined for individual operations or their

argument types. However, this requires searching

mechanisms for services that are distinct from those for

their argument types. Likewise, tModel’s reference to an

external technical specification, as applied in UDDI also

implies that a different mechanism is required for

reasoning over service interfaces.

Although the terms “taxonomy” and “ontology” are

sometimes used interchangeably, there is a critical

difference. Taxonomy indicates only class/subclass

relationship whereas Ontology describes a domain

completely. The essential mechanisms that ontology

languages provide include their formal specification

(which allows them to be queried) and their ability to

define properties of classes. Through these properties,

very accurate descriptions of services can be defined

and services can be related to other services or resources.

We are proposing a new and improved service directory

on the lines of UDDI but based on RDF/OWL [34]

ontology framework instead of current tModel based

taxonomy framework. This catalog captures the

computing resources across all clouds in terms of

“Capabilities”, “Structural Relationships” and Policies

(Preferences and Constraints).

Figure 3. Cloud Computing Catalog

Effective cloud computing resources ontology

information captured in the catalog provides the

following advantages:

� Consolidated view of Computing Resources across
clouds. Consistent way to expose Services Offered.

� Provide visibility and access to contractual

information at any point in time.

� Provides the ability to protect sensitive information
from unauthorized access. Configuration resources

will have security restrictions applied against them.

� Governance Processes
� One-Stop/Consistency
� Time-to-Value
� Overall Effectiveness

5. Cloud Computing Resources Ontology

One of the paramount and key goals of an intercloud

enabled cloud provider is not just to be able to offer vast

computing resources but provide complete visibility and

transparency to these resources, at the same time.

Providing transparency and visibility in this manner

ensures that the services and resources meet and are in

compliance with the architectural, functional, policies

and constraints requirements of other cloud providers.

In order to ensure that the requirements of an

intercloud enabled cloud provider are correctly matched

to the infrastructure capabilities in an automated fashion,

there is a need for declarative semantic model that can

capture both the requirements and constraints of

computing resources.

Over the last several years, there has been ongoing

effort around automation of datacenter/s by companies

such as Elastra [35]. Elastra has defined a modeling

language called EDML [36] for specifying the

datacenter computing resources semantics in terms of

XML based markup language.

We are proposing a similar ontology based semantic

model that captures the features and capabilities

available from a cloud provider’s infrastructure. These

capabilities are logically grouped together and exposed

as standardized units of provisioning and configuration

to be consumed by another cloud provider/s. These

capabilities are then associated with policies and

constraints for ensuring compliance and access to the

computing resources.

The proposed ontology based model not only

consists of physical attributes but quantitative &

qualitative attributes such as “Service Level Agreements

(SLAs)”, “Disaster Recovery” policies, “Pricing”

policies, “Security & Compliance” policies, and so on.

The following is a high level schematic of such

ontology based semantic model.

Figure 4. Cloud Computing Resources Ontology

At a very basic level, the RDF model is called a

“triple” as it consists of three parts,

Subject/Property/Object. It essentially contains one or

more “descriptions” of resources. A “description” is a

set of statements about a resource. It is structurally

similar to entity/attribute/value. Essentially, a statement

in RDF pulls resources, properties, and property values

together. Statements are typically called triples because

they include a subject (the resource), a predicate/verb

(the property), and an object (the property value or

another resource itself).

RDF allows you to define a group of things with

common characteristics called “Classes”. “Classes” are

allowed to inherit characteristics and behaviors from a

parent class. Each user-defined class is implicitly a

subclass of super class called “owl:Thing”.

The hierarchy of user-defined classes in our

proposed ontology scheme are “ResourceCapability” �

“CloudDomainCapability” � “CloudCapability” �

“TierCapabil;ity” � “CapabilityBundle”.

In order to demonstrate a working example, the

following is a code snippet of N-Triples [38] based

ontology semantic model instead. N-Triples & Turtle

[39] are a human-friendlier alternative to RDF/XML. N-

Triples or Turtle code, in turn, can be easily converted

to RDF/XML format using a converter tool.

The following sample shows the flow for semantic

model for cloud computing resources. Due to the large

size of the proposed semantic model for cloud

computing resources, we are unable to capture the

sample RDF code snippet in this document. In order to

demonstrate our working example, we are showing N-

Triples [38] code snippet instead.

Step 1: In our ontology example, “CloudDomain” is an

instance of class “CloudDomainCapability”. It consists

of three resources “Cloud.1”, “Cloud.2” & “Cloud.3”:
<http://cloud/domain>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/#cloud.1>.

<http://cloud/domain>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/#cloud.2>.

<http://cloud/domain>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/#cloud.3>.

<http://cloud/domain> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type>

<http://www.csp/resOntology#ClouddomainCapability>.

<http://cloud/domain> <http://www.w3.org/2000/01/rdf-

schema#label> "Cloud Computing

domain"^^<http://www.w3.org/2001/XMLSchema#string>.

Step 2: “Cloud.1”, in turn, consists of tier instances

“tier.1”, “tier.2” & “tier.3”:
<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#tier1>.

<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#tier2>.

<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#tier3>.

Step 3: Each of these cloud instances has associated

properties such as “StorageReplicationMethod”,

“InterCloudStorageAccess” etc. etc. These properties

are, in turn, used for determining if the computing

resources of a cloud provider meet the preferences &

constraints of the requesting cloud’s interest and

requirements:
<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#Storage-Replication-

Method>.

<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#Inter-Cloud-Storage-

Access>.

<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#Public-Storage-Access>.

<http://cloud/domain/#cloud.1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1#VPNGatewayAddress>.

<http://cloud/domain/#cloud.1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#CloudCapability>.

<http://cloud/domain/#cloud.1>

<http://www.w3.org/2000/01/rdf-schema#label> "Cloud

1"^^<http://www.w3.org/2001/XMLSchema#string>.

Step 4: Computing resources are logically grouped

together as bundles and exposed as standardized units of

provisioning and configuration to be consumed by

another cloud provider/s. These bundles are

“StorageBundle”, “ProcessingBundle” &

“NetworkBundle”. Each “Tier”, in turn, consists of

instances of resource bundles such as “StorageBundle”

etc. Each “Tier” also has its own associated properties

depicting preferences and constraints:
<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/#storage1>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/#processing1>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/#network1>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1.tier.1#replicationfactor>

.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1.tier.1#availability>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1.tier.1#storageprice>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1.tier.1#processingprice>.

<http://cloud/domain/cloud.1#tier1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1.tier.1#countries>.

<http://cloud/domain/cloud.1#tier1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#TierCapability>.

Step 5: “StorageBundle”, in turn, consists of resources

such as “CPU”, “CPU Cores”, “Memory” &

“LocalStorage”:
<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#CPU>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age0>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age1>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age2>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#Memory>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#CapabilityBundle>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#storageCapabilityBundle>.

<http://cloud/domain/cloud.1/bundle/#storage1>

<http://www.w3.org/2000/01/rdf-schema#label> "EC2

Large"^^<http://www.w3.org/2001/XMLSchema#string>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age1> <http://www.csp/resOntology#quantity>

"450971566080"^^<http://www.w3.org/2001/XMLSchema#long

>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age1> <http://www.csp/resOntology#unit>

<http://www.csp/resOntology#Byte>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age1> <http://www.w3.org/1999/02/22-rdf-syntax-

ns#type>

<http://www.csp/resOntology#StorageCapability>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age0> <http://www.csp/resOntology#quantity>

"450971566080"^^<http://www.w3.org/2001/XMLSchema#long

>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age0> <http://www.csp/resOntology#unit>

<http://www.csp/resOntology#Byte>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age0> <http://www.w3.org/1999/02/22-rdf-syntax-

ns#type>

<http://www.csp/resOntology#StorageCapability>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age2> <http://www.csp/resOntology#quantity>

"10737418240"^^<http://www.w3.org/2001/XMLSchema#long>

.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age2> <http://www.csp/resOntology#unit>

<http://www.csp/resOntology#Byte>.

<http://cloud/domain/cloud.1/bundle/storage1#LocalStor

age2> <http://www.w3.org/1999/02/22-rdf-syntax-

ns#type>

<http://www.csp/resOntology#StorageCapability>.

<http://cloud/domain/cloud.1/bundle/storage1#Memory>

<http://www.csp/resOntology#quantity>

"8053063680"^^<http://www.w3.org/2001/XMLSchema#long>.

<http://cloud/domain/cloud.1/bundle/storage1#Memory>

<http://www.csp/resOntology#unit>

<http://www.csp/resOntology#Byte>.

<http://cloud/domain/cloud.1/bundle/storage1#Memory>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#MemoryCapability>.

<http://cloud/domain/cloud.1/bundle/storage1#CPU>

<http://www.csp/resOntology#hasCapability>

<http://cloud/domain/cloud.1/bundle/storage1#CPUCore>.

<http://cloud/domain/cloud.1/bundle/storage1#CPU>

<http://www.csp/resOntology#hasCapability>

<http://www.csp/resOntology#X86-64Compatible>.

<http://cloud/domain/cloud.1/bundle/storage1#CPU>

<http://www.csp/resOntology#quantity>

"2200000000"^^<http://www.w3.org/2001/XMLSchema#long>.

<http://cloud/domain/cloud.1/bundle/storage1#CPU>

<http://www.csp/resOntology#unit>

<http://www.csp/resOntology#Hertz>.

<http://cloud/domain/cloud.1/bundle/storage1#CPU>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#CPUCapability>.

<http://cloud/domain/cloud.1/bundle/storage1#CPUCore>

<http://www.csp/resOntology#quantity>

"2"^^<http://www.w3.org/2001/XMLSchema#int>.

<http://cloud/domain/cloud.1/bundle/storage1#CPUCore>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.csp/resOntology#CPUCoreCapability>.

6. SPARQL Query Language

SPARQL [39] (SPARQL Protocol And RDF Query

Language) is a very powerful SQL-like language for

querying and making semantic information machine

process-able. The structure and example of a SPARQL

Query is illustrated in Figure 5.

Structure:

PREFIX: Prefix definition (optional)

SELECT: Result form

FROM: Data sources (optional)

WHERE: Graph pattern (=path expression)

• FILTER

• OPTIONAL

Example:

PREFIX geo: <http://www.geography.org/schema.rdf#>

SELECT ?X ?Y

FROM <http://www.geography.org>

WHERE { ?X geo:hasCapital ?Y.

 ?Y geo:areacode ?Z }

ORDER BY ?X

Figure 5. Structure & Example of SPARQL Query

SPARQL provides a very powerful language for

executing very complex queries into the RDF data

which are often necessary. In our case, the following

example query applies certain Preferences and

Constraints to the resources in the computing semantics

catalog for determining if the service description on

another cloud meets the constraints of the first cloud’s

interest:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?cld1 ?cld2 ?cld3 ?cld4 ?cld5

WHERE { ?cld1

<http://www.csp/resOntology#availabilityQuanity> ?avai

labilityQuanity .

 ?cld2

<http://www.csp/resOntology#replicationFactor> ?replic

ationFactor .
?cld3

<http://www.csp/resOntology#tierCountries> ?tierCountr

ies .

 ?cld4

<http://www.csp/resOntology#StorageReplicationMethod>

?StorageReplicationMethod .

 ?cld5 <http://www.csp/resOntology#

InterCloudStorageAccess > ?InterCloudStorageAccess .

FILTER (?availabilityQuanity = 99.999)

FILTER (?replicationFactor = 5)

FILTER (?tierCountries = "Japan")

FILTER (?StorageReplicationMethod = "AMQP")

FILTER (?InterCloudStorageAccess = "NFS")

 }

6.1. SPARQL Query over Hadoop

Due to very large size of “Cloud Ontology” set in the

intercloud environment, we are expecting a very large

RDF dataset. SPARQL queries against such a large RDF

dataset would be highly inefficient and slow. We believe

that such a large RDF dataset should be stored on a

Distributed File System such as HDFS (Hadoop

Distributed File System). By storing RDF dataset in

HDFS and querying through Hadoop [40] “Map-

Reduce” programming would make SPARQL queries

highly efficient and faster.

We propose that the Intercloud Exchanges will

leverage Hadoop based distributed processing for

serving SPARQL request across federated resource

catalogs hosted by Intercloud Root providers.

7. Conclusions and Future Work

We have gone into great detail to test the proposal

that Intercloud Exchanges in conjunction with Ontology

based Computing Resources Catalog and XMPP

protocol are the key components for enablement of

“Federated Cloud” environment.

As to continuing work, we are continuing to develop

the suite of Intercloud protocols. With the proposed

Intercloud Exchanges, XMPP protocol and RDF

Ontology based Resources Catalog; we should be able

to demonstrate an end-to-end comprehensive “Federated

Cloud Storage” use case for Intercloud next.

8. References

[1] Amazon Web Services at http://aws.amazon.com/

[2] James Murty, Programming Amazon Web Services;

S3, EC2, SQS, FPS, and SimpleDB, O’Reilly Press,

2008.

[3] Google AppEngine at

http://code.google.com/appengine/

[4] Eugene Ciurana, Developing with Google App

Engine, Firstpress, 2009.

[5] Microsoft Azure, at

http://www.microsoft.com/azure/default.mspx

[6] VMware VCloud Initiative at

http://www.vmware.com/technology/cloud-

computing.html

[7] Nurmi D., Wolski R., Grzegorczyk C., Obertelli G.,

Soman S., Youseff L., Zagorodnov D., The Eucalyptus

Open-source Cloud-computing System, Proceedings of

Cloud Computing and Its Applications, Chicago, Illinois

(October 2008)

[8] Nurmi D., Wolski R., Grzegorczyk C., Obertelli G.,

Soman S., Youseff L., Zagorodnov D., Eucalyptus: A

Technical Report on an Elastic Utility Computing

Architecture Linking Your Programs to Useful Systems,

UCSB Computer Science Technical Report Number

2008-10 (August 2008)

[9] JSR 88: Java Enterprise Edition Application

Deployment at http://jcp.org/en/jsr/detail?id=88

[10] Microsoft .NET at http://www.microsoft.com/net/

[11] Youseff, L. and Butrico, M. and Da Silva, D.,

Toward a unified ontology of cloud computing, GCE’08

Grid Computing Environments Workshop, 2008.

[12] Lijun Mei, W.K. Chan, T.H. Tse, A Tale of Clouds:

Paradigm Comparisons and Some Thoughts on

Research Issues, APSCC pp.464-469, 2008 IEEE Asia-

Pacific Services Computing Conference, 2008

[13] Cloud Computing Use Cases Google Group

(Public), at http://groups.google.com/group/cloud-

computing-use-cases,

http://www.scribd.com/doc/18172802/Cloud-

Computing-Use-Cases-Whitepaper , accessed March

2010

[14] Buyya, R. and Pandey, S. and Vecchiola, C.,

Cloudbus toolkit for market-oriented cloud computing,

Proceeding of the 1st International Conference on Cloud

Computing (CloudCom), 2009

[15] Yildiz M, Abawajy J, Ercan T., Bernoth A., A

Layered Security Approach for Cloud Computing

Infrastructure, ISPAN, pp.763-767, 10th International

Symposium on Pervasive Systems, Algorithms, and

Networks, 2009

[16] Bernstein, D., Ludvigson, E., Sankar, K., Diamond,

S., and Morrow, M., Blueprint for the Intercloud -

Protocols and Formats for Cloud Computing

Interoperability, ICIW '09. Fourth International

Conference on Internet and Web Applications and

Services, pp. 328-336, 2009

[17] Bernstein, D., Keynote 2: The Intercloud: Cloud

Interoperability at Internet Scale, NPC, pp.xiii, 2009

Sixth IFIP International Conference on Network and

Parallel Computing, 2009

[18] Extensible Messaging and Presence Protocol

(XMPP): Core, and related other RFCs at

http://xmpp.org/rfcs/rfc3920.html

[19] XMPP Standards Foundation at http://xmpp.org/

[20] W3C Semantic Web Activity, at

http://www.w3.org/2001/sw/

[21] Resource Description Framework (RDF), at

http://www.w3.org/RDF/

[22] Bernstein, D., Vij, D., Using XMPP as a transport

in Intercloud Protocols, submitted to 2nd USENIX

Workshop on Hot Topics in Cloud Computing

(HotCloud '10), for publication June 2010

[23] Domain >ames – Concepts and Facilities, and

related other RFCs, at

http://www.ietf.org/rfc/rfc1034.txt

[24] Domain >ame System Structure and Delegation, at

http://www.ietf.org/rfc/rfc1591.txt

[25] Internet X.509 Public Key Infrastructure,

Certificate Policy and Certification Practices

Framework, at http://tools.ietf.org/html/rfc3647

[26] The Internet Society, at http://www.isoc.org/

[27] The Internet Corporation for Assigned >ames and

>umbers, at http://www.icann.org/

[28] Simple Authentication and Security Layer (SASL),

at http://tools.ietf.org/html/rfc4422

[29] Security Assertion Markup Language (SAML), at

http://saml.xml.org/saml-specifications

[30] OASIS UDDI Specification TC, at

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=uddi-

spec

[31] UDDI Registry tModels, at

http://www.uddi.org/taxonomies/UDDI_Registry_tMod

els.htm

[32] Paolucci, M., Kawamura T., Payne T., and Sycara

K., Importing the Semantic Web in UDDI, Web Services,

E-Business and Semantic Web Workshop, 2002.

[33] Moreau, L. and Miles, S. and Papay, J. and Decker,

K. and Payne, T., Publishing semantic descriptions of

services, First GGF Semantic Grid Workshop, held at

the Ninth Global Grid Forum, Chicago IL, USA, 2003

[34] Web Ontology Language, at

http://www.w3.org/TR/owl-features/

[35] Elastra, at http://www.elastra.com

[36] EDML, at

http://www.elastra.com/technology/languages/edml

[37] N-Triples, at

http://www.w3.org/2001/sw/RDFCore/ntriples/

[38] Turtle – Terse RDF Triple Language, at

http://www.w3.org/TeamSubmission/turtle/#sec-diff-n3

[39] SPARQL Query Language for RDF, at

http://www.w3.org/TR/rdf-sparql-query/

[40] Hadoop, at http://hadoop.apache.org/

